1. Practice Midterm 1

Problem 1. At what value(s) of x is the following function discontinuous?

$$
f(x)=\left\{\begin{array}{lc}
x^{2}+4 x+5 & : \text { if } x<-2 \\
\frac{1}{2} x & : \text { if }-2 \leq x \leq 2 \\
1+\sqrt{x-2} & : \text { if } x>2
\end{array}\right.
$$

a) -2
b) 0
c) $-2,0$, and 2
d) -2 and 0
e) 2
f) -2 and 2
g) 0 and 2
h) f is continuous everywhere

Problem 2. The hypotenuse $A B$ of a right triangle $A B C$ remains constant at 5 feet as both legs are changing. One leg, $A C$, is decreasing at the rate of 2 feet per second. In order for the hypotenuse to remain 5 feet, the other leg, $B C$, is increasing. The rate, in square feet per second, at which the area is changing when $A C=3$ is
a) $\frac{25}{4}$
b) $\frac{7}{2}$
c) $\frac{-3}{2}$
d) $\frac{-7}{4}$
e) $\frac{3}{2}$
f) $\frac{-7}{2}$
g) $\frac{7}{4}$
h) None of these

Problem 3
If $x^{2}-x y-y^{3}=13$, then find $\frac{d y}{d x}$ evaluated at $(4,1)$.
a) 0
b) $\frac{3}{2}$
c) $\frac{7}{2}$
d) $\frac{9}{7}$
e) -2
f) -1
g) 1
h) 7

Problem 4. What is the slope of the tangent line to $f(x)=(x)\left(\cos \left(x^{2}\right)\right)$ at $x=\sqrt{\frac{\pi}{2}}$?
a) $-\pi$
b) π
c) 0
d) 1
e) -1
f) $\frac{1}{2}$

Problem 5. The function $f(x)=(x-3)^{\frac{2}{3}}$ is increasing for what values of x ?
a) $(-\infty, \infty)$
b) $(3, \infty)$
c) nowhere
d) $(-\infty, 3)$
e) $(0, \infty)$
f) everywhere except 3

Problem 6.
Use the intermediate value theorem to show that there is a number that is exactly one more than its cube.

Problem 7.Find the value of the limit.

$$
\lim _{x \rightarrow 2} \frac{\sqrt{x+7}-3}{(x-2)(x+1)}
$$

Problem 8. Let V be the volume of a cylinder having height h and radius r, and assume that h and r vary with time. When the height is 5 in . and is increasing at $0.2 \mathrm{in} . / \mathrm{s}$. , the radius is 3 in . and is decreasing at $0.1 \mathrm{in} . / \mathrm{s}$. How fast is the volume changing at that instant?

Problem 9. Suppose $f(3)=2, f^{\prime}(3)=5$, and $f^{\prime \prime}(3)=-2$. Let $g(x)=[f(x)]^{2}$. Find the value of $g "(3)$.

Problem 10. If $f(x)=\frac{x}{\tan (x)}$, find $f^{\prime}\left(\frac{\pi}{4}\right)$. Do not leave any trigonometric functions in your answer.

